Air contained in a rigid, insulated tank fitted with a paddle wheel, initially at 300 K, 2 bar, and a volume of 2 m3, is stirred until its temperature is 500 K. Assuming the ideal gas model for the air, and ignoring kinetic and potential energy, determine (a) the final pressure, in bar, (b) the work, in kJ, and (c) the amount of entropy produced, in kJ/K. Solve usinga. data from Table A-22.b. constant cv read from Table A-20 at 400 K.
Steam undergoes an adiabatic expansion in a piston–cylinder assembly from 100 bar, 360°C to 1 bar, 160°C. What is work in kJ per kg of steam for the process? Calculate the amount of entropy produced, in kJ/K per kg of steam. What is the maximum theoretical work that could be obtained from the given initial state to the same final pressure? Show both processes on a properly labeled sketch of the T–s diagram.
Air at 400 kPa, 980 K enters a turbine operating at steady state and exits at 100 kPa, 670 K. Heat transfer from the turbine occurs at an average outer surface temperature of 315 K at the rate of 30 kJ per kg of air flowing. Kinetic and potential energy effects are negligible. Assuming the air is modeled as an ideal gas with variations in specific heat, determine (a) the rate power is developed, in kJ per kg of air flowing, and (b) the rate of entropy production within the turbine, in kJ/K per kg of air flowing.
Air at 200 kPa, 52°C, and a velocity of 355 m/s enters an insulated duct of varying cross-sectional area. The air exits at 100 kPa, 82°C. At the inlet, the cross-sectional area is 6.57 cm2. Assuming the ideal gas model for the air, determinea. the exit velocity, in m/s.b. the rate of entropy production within the duct, in kW/K.