§ME 231 Homework 4


Sep 25, 2025

§3.62


Determine the volume, in m3, occupied by 2 kg of H2O at 100 bar, 400°C, usinga. data from the compressibility chart.b. data from the steam tables.Compare the results of parts (a) and (b) and discuss.
m=2kg m=2kg
P=100bar P=100bar
T=400°C=673.15K T=400\degree C=673.15K

§a.


Critical temperature from the end of table A-2:
TC=374.14°C=647.29K T_C=374.14\degree C=647.29K
Critical temperature from the end of table A-3:
PC=220.9bar P_C=220.9bar
Now we get the reduced temperature and pressure:
TR=TTC=673.15K647.29K=1.04 T_R=\frac{T}{T_C}=\frac{673.15K}{647.29K}=1.04
PR=PPC=100bar220.9bar=0.453 P_R=\frac{P}{P_C}=\frac{100bar}{220.9bar}=0.453
Since TR<2T_R<2 and PR>0.2P_R>0.2, zz cannot be safely assumed to be 11. I must refer to the generalized compressibility chart.
Figure 3.12 from Fundamentals of Engineering Thermodynamics
TR1.00 T_R\approx 1.00
Z0.85 Z\approx 0.85
Now we use a variation of the ideal gas equation with compressibility effects in mind:
Pv=ZRT Pv=ZRT
Solving for vv:
v=ZRTP v=\frac{ZRT}{P}
I will need RR so let's get that real quick:
R=RˉM=8.3144598JmolK18.01528gmol=0.4615227JgK R=\frac{\bar{R}}{M}=\frac{8.3144598\frac{J}{mol*K}}{18.01528 \frac{g}{mol}}=0.4615227\frac{J}{g*K}
v=ZRTP=0.850.4615227JgK673.15K100bar=0.026407m3kg v=\frac{ZRT}{P}=\frac{0.85 * 0.4615227\frac{J}{g*K} * 673.15K}{100bar}=0.026407\frac{m^3}{kg}
V=mv=2kg0.026407m3kg=0.0528m3 V=mv=2kg*0.026407\frac{m^3}{kg}=\boxed{0.0528m^3}

§b.


From table A-5 where P=100bar=10.0MPaP=100bar=10.0MPa and T=400°CT=400\degree C:
v=0.02641m3/kg v=0.02641m^3/kg
V=mv=2kg0.02641m3/kg=0.0528m3 V=mv=2kg*0.02641m^3/kg=\boxed{0.0528m^3}

§Discuss


The steam tables hide the finer details about compressibility effects and just gives your easy specific values (less work = happier me). They both lead to the same results which should not be a surprise.

§3.65


Determine the temperature, in °C, of air at 30 bar and a specific volume of 0.013 m3kg.
P=30bar P=30bar
v=0.013m3/kg v=0.013m^3/kg
R=287JkgK R=287\frac{J}{kg*K}
Pv=RT Pv=RT
T=PvR=30bar0.013m3/kg287JkgK=136K=137°C T=\frac{Pv}{R}=\frac{30bar * 0.013m^3/kg}{287\frac{J}{kg*K}}=136K=\boxed{-137\degree C}

§3.77


Carbon dioxide (CO2) contained in a piston–cylinder arrangement, initially at 6 bar and 400 K, undergoes an expansion to a final temperature of 298 K, during which the pressure–volume relationship is pV1.2 = constant. Assuming the ideal gas model for the CO2, determine the final pressure, in bar, and the work and heat transfer, each in kJ/kg.
P1=6bar P_1=6bar
T1=400K T_1=400K
T2=298K T_2=298K
pV1.2=const=C pV^{1.2}=\text{const}=C
n=1.2 n=1.2
R=0.1889kJkgK R=0.1889\frac{kJ}{kg*K}
Because it's an ideal gas, P2P_2 can be evaluated easily:
P1P2=(T1T2)nn1 \frac{P_1}{P_2}=\left(\frac{T_1}{T_2}\right)^\frac{n}{n-1}
P2=P1(T1T2)nn1=6bar(400K298K)1.21.21=1.026bar P_2=\frac{P_1}{\left(\frac{T_1}{T_2}\right)^\frac{n}{n-1}}=\frac{6bar}{\left(\frac{400K}{298K}\right)^\frac{1.2}{1.2-1}}=\boxed{1.026bar}
Work also has a friendly equation:
W=mR(T2T1)1n W=\frac{mR(T_2-T_1)}{1-n}
We don't want the total work, just the specific work in kJ/kgkJ/kg:
Wm=R(T2T1)1n=0.1889kJkgK(298K400K)11.2=96.34kJ/kg \frac{W}{m}=\frac{R(T_2-T_1)}{1-n}=\frac{0.1889\frac{kJ}{kg*K} * (298K - 400K)}{1 - 1.2}=\boxed{96.34kJ/kg}
Q/mQ/m cannot be evaluated directly so I will need ΔE/m=ΔU/m\Delta E/m=\Delta U/m.cvc_v from table A-20 where T=300KT=300K:
cv=0.657kJkgK c_v=0.657\frac{kJ}{kg*K}
ΔU=mcv(T2T1) \Delta U=mc_v(T_2-T_1)
ΔUm=cv(T2T1)=0.657kJkgK(298K400K)=67.01kJ/kg \frac{\Delta U}{m}=c_v(T_2-T_1)=0.657\frac{kJ}{kg*K}*(298K - 400K)=-67.01kJ/kg
ΔE/m=ΔU/m=Q/mW/m \Delta E/ m=\Delta U/m=Q/m-W/m
Q/m=ΔU/m+W/m=67.01kJ/kg+96.34kJ/kg=29.33kJ/kg Q/m=\Delta U/m+W/m=-67.01kJ/kg+96.34kJ/kg=\boxed{29.33kJ/kg}

§3.83


Argon contained in a closed, rigid tank, initially at 50°C, 2 bar, and a volume of 2 m3, is heated to a final pressure of 8 bar. Assuming the ideal gas model with k = 1.67 for the argon, determine the final temperature, in °C, and the heat transfer, in kJ.
T1=50°C=323.2K T_1=50\degree C=323.2K
P1=2bar P_1=2bar
P2=8bar P_2=8bar
V=2m3 V=2m^3
k=1.67 k=1.67
PV=mRT PV=mRT
Here mm and RR are constant so we can rewrite it in terms of constants:
PVT=mR \frac{PV}{T}=mR
P1V1T1=P2V2T2 \frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}
Abd since it's a rigid tank:
V2=V1 V_2=V_1
P1V1T1=P2V1T2 \frac{P_1\cancel{V_1}}{T_1}=\frac{P_2\cancel{V_1}}{T_2}
P1T1=P2T2 \frac{P_1}{T_1}=\frac{P_2}{T_2}
Now we can solve for T2T_2:
T2=P2T1P1=8bar323.2K2bar=1292.8K=1020°C T_2=\frac{P_2T_1}{P_1}=\frac{8bar * 323.2K}{2bar}=1292.8K=\boxed{1020\degree C}
ΔE=ΔU=U2U1=m(u2u1)=QW \Delta E=\Delta U=U_2-U_1=m(u_2-u_1)=Q-W
The gas does not do work on the environment so W=0W=0
Q=m(u2u1) Q=m(u_2-u_1)
From table A-21 in the "Monoatomic gases" row:
CPR=CPˉRˉ=2.5 \frac{C_P}{R}=\frac{\bar{C_P}}{\bar{R}}=2.5
For ideal gases uu (internal energy) and hh (enthalpy) are functions of TT. So a change is uu is some scalar of a change in TT:
u2u1=cv(T2T1) u_2-u_1=c_v(T_2-T_1)
Q=mcv(T2T1) Q=mc_v(T_2-T_1)
Still need the mass:
PV=mRT PV=mRT
P1V=mRT1 P_1V=mRT_1
m=P1VRT1 m=\frac{P_1V}{RT_1}
R=RˉM=0.2081kJkgK R=\frac{\bar{R}}{M}=0.2081\frac{kJ}{kg*K}
m=P1VRT1=2bar2m30.2081kJkgK323.2K=5.9473kg m=\frac{P_1V}{RT_1}=\frac{2bar * 2m^3}{0.2081\frac{kJ}{kg*K} * 323.2K}=5.9473kg
Now time for cvc_v:(I don't need this but keeping it here for memory)
cp=kRk1 c_p=\frac{kR}{k-1}
cv=Rk1=0.2081kJkgK1.671=0.3106kJkgK c_v=\frac{R}{k-1}=\frac{0.2081\frac{kJ}{kg*K}}{1.67-1}=0.3106\frac{kJ}{kg*K}
Q=5.9473kg0.3106kJkgK(1292.8K323.2K)=1791kJ Q=5.9473kg * 0.3106\frac{kJ}{kg*K} * (1292.8K - 323.2K)=\boxed{1791kJ}

§3.91


Carbon dioxide (CO2) is compressed in a piston–cylinder assembly from p1 = 0.7 bar, T1 = 280 K to p2 = 11 bar. The initial volume is 0.262 m3. The process is described by pV1.25 = constant. Assuming ideal gas behavior and neglecting kinetic and potential energy effects, determine the work and heat transfer for the process, each in kJ, using (a) constant specific heats evaluated at 300 K, and (b) data from Table A-23. Compare the results and discuss.
P1=0.7bar P_1=0.7bar
T1=280K T_1=280K
P2=11bar P_2=11bar
V1=0.262m3 V_1=0.262m^3
pV1.25=const=C pV^{1.25}=const=C
n=1.25 n=1.25

§(a)


From table A-20 with T=300KT=300K as instructed in the question:
cv=0.657kJkgK c_v=0.657\frac{kJ}{kg*K}
Δu=u2u1=cv(T2T1) \Delta u=u_2-u_1=c_v(T_2-T_1)
T1T_1 was given but T2T_2 is also needed to get Δu\Delta u. Because we're assuming ideal gas, the following holds true:
P1P2=(T1T2)nn1 \frac{P_1}{P_2}=\left(\frac{T_1}{T_2}\right)^\frac{n}{n-1}
Now solving for T2T_2:
(P1P2)n1n=T1T2 \left(\frac{P_1}{P_2}\right)^\frac{n-1}{n}=\frac{T_1}{T_2}
T2=T1(P1P2)n1n=280K(0.7bar11bar)1.2511.25=485.8K T_2=\frac{T_1}{\left(\frac{P_1}{P_2}\right)^\frac{n-1}{n}}=\frac{280K}{\left(\frac{0.7bar}{11bar}\right)^\frac{1.25-1}{1.25}}=485.8K
Δu=0.657kJkgK(485.8K280K)=135.21kJ/kg \Delta u=0.657\frac{kJ}{kg*K}*(485.8K-280K)=135.21kJ/kg
It would help to have the mass to turn Δu\Delta u into ΔU\Delta U:
R=0.1889kJkgK R=0.1889\frac{kJ}{kg*K}
PV=mRT PV=mRT
P1V1=mRT1 P_1V_1=mRT_1
m=P1V1RT1=0.7bar0.262m30.1889kJkgK280K=0.347kg m=\frac{P_1V_1}{RT_1}=\frac{0.7bar * 0.262m^3}{0.1889\frac{kJ}{kg*K} * 280K}=0.347kg
ΔU=mΔu=0.347kg135.21kJ/kg=46.92kJ \Delta U=m\Delta u=0.347kg * 135.21kJ/kg=46.92kJ
Change in internal energy is great but what we really need is QQ and WW. WW can be evaluated easily:
W=mR(T2T1)1n=0.347kg0.1889kJkgK(485.8K280K)11.25=53.96kJ W=\frac{mR(T_2-T_1)}{1-n}=\frac{0.347kg * 0.1889\frac{kJ}{kg*K} * (485.8K - 280K)}{1-1.25}=\boxed{-53.96kJ}
And QQ can now be evaluated:
ΔE=ΔU=QW \Delta E=\Delta U=Q-W
Q=ΔU+W=46.92kJ53.96kJ=7.04kJ Q=\Delta U+W=46.92kJ-53.96kJ=\boxed{-7.04kJ}

§(b)


From table A-23 where T=300KT=300K:
u1ˉ=6939kJkmol \bar{u_1}=6939\frac{kJ}{kmol}
From table A-23 where T=485.8K490KT=485.8K\approx 490K:
u2ˉ=13158kJkmol \bar{u_2}=13158\frac{kJ}{kmol}
These values aren't very helpful when normalized by moles. Converting them to kilograms:
M=44.01g/mol M=44.01g/mol
u1=u1ˉM=6939kJkmol44.01g/mol=157.67kJ/kg u_1=\frac{\bar{u_1}}{M}=\frac{6939\frac{kJ}{kmol}}{44.01g/mol}=157.67kJ/kg
u1=13158kJkmol44.01g/mol=298.98kJ/kg u_1=\frac{13158\frac{kJ}{kmol}}{44.01g/mol}=298.98kJ/kg
ΔU=m(u2u1)=0.347kg(298.98kJ/kg157.67kJ/kg)=49kJ \Delta U=m(u_2-u_1)=0.347kg*(298.98kJ/kg-157.67kJ/kg)=49kJ
That's pretty close! WW would be evaluated in the same way as in part (a) so let's jump to QQ:
W=mR(T2T1)1n=53.96kJ W=\frac{mR(T_2-T_1)}{1-n}=\boxed{-53.96kJ}
Q=ΔU+W=49kJ53.96kJ=4.96kJ Q=\Delta U+W=49kJ-53.96kJ=\boxed{-4.96kJ}