§ME 231 Homework 3


Sep 25, 2025
Hello, grader of my homework! In order to preserve my sanity, I am moving away from writing most of my homeworks for most classes on paper/Google Docs. I am now trying out Markdown and LaTeX\LaTeX with the GitHub flavor so my homeworks should be prettier for you and easier for me to write.

§3.33


A closed, rigid tank contains Refrigerant 134a, initially at 100°C. The refrigerant is cooled until it becomes saturated vapor at 20°C. For the refrigerant, determine the initial and final pressures, each in bar, and the heat transfer, in kJ/kg. Kinetic and potential energy effects can be ignored.
From table A-10 with T2=20°CT_2=20\degree C:P2=5.7160bar\boxed{P_2=5.7160bar}u2=u2g=237.91kJ/kgu_2=u_{2g}=237.91kJ/kgThe total specific volume is constant.v1=v2=v2g=0.0358m3/kgv_1=v_2=v_{2g}=0.0358m^3/kgFrom table A-10 with T1=100°CT_1=100\degree C:v1f=1.5443103m3/kg=0.0015443m3/kgv_{1f}=1.5443*10^{-3}m^3/kg=0.0015443m^3/kgv1g=0.0027m3/kgv_{1g}=0.0027m^3/kgv1>v1gv_1>v_{1g}The liquid at 100°C100\degree C is superheated.Two entries from table A-12 with T=100°CT=100\degree C surrounding my target v=0.0358m3/kgv=0.0358m^3/kg:
PP vv uu
7.0bar7.0bar 0.04064m3/kg0.04064m^3/kg 309.74kJ/kg309.74kJ/kg
8.0bar8.0bar 0.03519m3/kg0.03519m^3/kg 308.93kJ/kg308.93kJ/kg
Interpolation time 😨P1=7.00bar+(8.0bar7.00bar)0.0358m3/kg0.04064m3/kg0.03519m3/kg0.04064m3/kg=7.89barP_1=7.00bar+(8.0bar-7.00bar)\frac{0.0358m^3/kg-0.04064m^3/kg}{0.03519m^3/kg-0.04064m^3/kg}=\boxed{7.89bar}u1=309.74kJ/kg+(308.93kJ/kg309.74kJ/kg)0.0358m3/kg0.04064m3/kg0.03519m3/kg0.04064m3/kg=309kJ/kgu_1=309.74kJ/kg+(308.93kJ/kg-309.74kJ/kg)\frac{0.0358m^3/kg-0.04064m^3/kg}{0.03519m^3/kg-0.04064m^3/kg}=309kJ/kgNow specific QQ can be solved for.ΔU=QW\Delta U=Q-\cancel{W}Q=ΔU=U2U1=m(u2u1)Q=\Delta U=U_2-U_1=m(u_2-u_1)Q/m=u2u1=237.91kJ/kg309kJ/kg=71.1kJ/kgQ/m=u_2-u_1=237.91kJ/kg-309kJ/kg=\boxed{-71.1kJ/kg}

§3.40


A piston–cylinder assembly contains water, initially a saturated vapor at 200°C. The water is cooled at constant temperature to saturated liquid. Kinetic and potential energy effects are negligible.a. For the water as a closed system, determine the work per unit mass of water, in kJ/kg.b. If the energy transfer by heat for the process is −1200 kJ, determine the mass of the water, in kg.
T1=T2=200°CT_1=T_2=200\degree CFrom table A-2 with T1=200°CT_1=200\degree C:u1=u1g=2595.3kJ/kgu_1=u_{1g}=2595.3kJ/kgu2=u2f=850.65kJ/kgu_2=u_{2f}=850.65kJ/kgQ/m=u2u1=850.65kJ/kg2595.3kJ/kg=1745kJ/kgQ/m=u_2-u_1=850.65kJ/kg-2595.3kJ/kg=\boxed{-1745kJ/kg} (a)Q/m=1745kJ/kgQ/m=-1745kJ/kgm=Q1745kJ/kg=1200kJ1745kJ/kg=0.688kgm=\frac{Q}{-1745kJ/kg}=\frac{−1200kJ}{-1745kJ/kg}=\boxed{0.688kg} (b)

§3.43


A closed, rigid tank filled with water, initially at 20 bar, a quality of 80%, and a volume of 0.5 m3, is cooled until the pressure is 4 bar. Show the process of the water on a sketch of the T–υ diagram and evaluate the heat transfer, in kJ.
P1=20barP_1=20barx1=80%x_1=80\%V1=0.5m3V_1=0.5m^3P2=4barP_2=4barFrom table A-3 with P=20barP=20barv1f=1.1767103m3/kgv_{1f}=1.1767*10^{-3}m^3/kgv1g=0.09963m3/kgv_{1g}=0.09963m^3/kgu1f=906.44kJ/kgu_{1f}=906.44kJ/kgu1g=2600.3kJ/kgu_{1g}=2600.3kJ/kgv1=vf+x(vgvf)v_1=v_f+x(v_g-v_f)v1=1.1767103m3/kg+(80%)(0.09963m3/kg1.1767103m3/kg)v_1=1.1767*10^{-3}m^3/kg+(80\%)(0.09963m^3/kg-1.1767*10^{-3}m^3/kg)v1=0.079939m3/kgv_1=0.079939m^3/kgu1=906.44kJ/kg+(80%)(2600.3kJ/kg906.44kJ/kg)u_1=906.44kJ/kg+(80\%)(2600.3kJ/kg-906.44kJ/kg)u1=2261.5kJ/kgu_1=2261.5kJ/kgNow solving for mm which I will use later to multiply with specific heat to get heat just in kJkJ.v1=V1/mv_1=V_1/mm=V1v1=0.5m30.079939m3/kg=6.25kgm=\frac{V_1}{v_1}=\frac{0.5m^3}{0.079939m^3/kg}=6.25kgNow I need u2u_2 and because it's a rigid tank, the specific volume is constant.v2=v1=0.079939m3/kgv_2=v_1=0.079939m^3/kgFrom table A-3 with P=4barP=4barv2f=1.0836103m3/kg=0.0010836m3/kgv_{2f}=1.0836*10^{-3}m^3/kg=0.0010836m^3/kgv2g=0.4625m3/kgv_{2g}=0.4625m^3/kgu2f=604.31kJ/kgu_{2f}=604.31kJ/kgu2g=2553.6kJ/kgu_{2g}=2553.6kJ/kgv2f<v2<v2gv_{2f}<v_2<v_{2g}The second state of the liquid is partially saturated. This should allow me to calculate the quality and then the later the specific energy for state 2 after which I will have access to specific energies of both states and also the mass from above.x2=v2v2fv2gv2f100%=0.079939m3/kg1.0836103m3/kg0.4625m3/kg1.0836103m3/kg100%=17.09%x_2=\frac{v_2-v_{2f}}{v_{2g}-v_{2f}}*100\%=\frac{0.079939m^3/kg-1.0836*10^{-3}m^3/kg}{0.4625m^3/kg-1.0836*10^{-3}m^3/kg}*100\%=17.09\%u2=u2f+x2(u2gu2f)u_2=u_{2f}+x_2(u_{2g}-u_{2f})u2=604.31kJ/kg+(17.09%)(2553.6kJ/kg604.31kJ/kg)=937.4kJ/kgu_2=604.31kJ/kg+(17.09\%)(2553.6kJ/kg-604.31kJ/kg)=937.4kJ/kgAnd now everything comes together.Q=ΔU+W=ΔU=U2U1=m(u2u1)Q=\Delta U+\cancel{W}=\Delta U=U_2-U_1=m(u_2-u_1)Q=6.25kg(937.4kJ/kg2261.5kJ/kg)=8280kJQ=6.25kg*(937.4kJ/kg-2261.5kJ/kg)=\boxed{-8280kJ}
I may be able to write pretty now, but drawing... that's a different story.

§3.56


A piston–cylinder assembly contains propane, initially at 27°C, 1 bar, and a volume of 0.2 m3. The propane undergoes a process to a final pressure of 4 bar, during which the pressure–volume relationship is pV1.1 = constant. For the propane, evaluate the work and heat transfer, each in kJ. Kinetic and potential energy effects can be ignored.
T1=27°CT_1=27\degree Cp1=1barp_1=1barV1=0.2m3V_1=0.2m^3p2=4barp_2=4barpV1.1=constpV^{1.1}=\text{const}It's a polytropic process.n=1.1n=1.1p1V11.1=p2V21.1p_1V_1^{1.1}=p_2V_2^{1.1}p1V11.1p2=V21.1\frac{p_1V_1^{1.1}}{p_2}=V_2^{1.1}V2=(p1V11.1p2)11.1=(1bar(0.2m3)1.14bar)11.1=0.05672m3V_2=\left(\frac{p_1V_1^{1.1}}{p_2}\right)^{\frac{1}{1.1}}=\left(\frac{1bar*(0.2m^3)^{1.1}}{4bar}\right)^{\frac{1}{1.1}}=0.05672m^3W=p2V2p1V11n=4bar0.05672m31bar0.2m311.1=26.86kJW=\frac{p_2V_2-p_1V_1}{1-n}=\frac{4bar*0.05672m^3-1bar*0.2m^3}{1-1.1}=\boxed{-26.86kJ}Now for the heat transfer.ΔU=QW\Delta U=Q-WQ=ΔU+W=m(Δu)+W=m(u2u1)+WQ=\Delta U+W=m(\Delta u)+W=m(u_2-u_1)+WWW is known and I can get specific energy for both states. So what I really need now is mass. Assuming ideal gas law, I should be able to get mm.R=RˉM=8.3144598J/(Kmol)44.09kg/kmol=188.58J/(kgK)R=\frac{\bar{R}}{M}=\frac{8.3144598J/(K*mol)}{44.09kg/kmol}=188.58J/(kg*K)PV=mRTPV=mRTP1V1=mRT1P_1V_1=mRT_1m=P1V1R1T1=1bar0.2m3188.58J/(kgK)27°C=0.353kgm=\frac{P_1V_1}{R_1T_1}=\frac{1bar*0.2m^3}{188.58J/(kg*K)*27\degree C}=0.353kgSpecific internal energies of state 1 from table A-18 with p=1barp=1bar around my target T=27°CT=27\degree C
TT uu
20°C20\degree C 463.3kJ/kg463.3kJ/kg
30°C30\degree C 478.2kJ/kg478.2kJ/kg
u1=463.3kJ/kg+(478.2kJ/kg463.3kJ/kg)30°C27°C30°C20°C=467.77kJ/kgu_1=463.3kJ/kg+(478.2kJ/kg-463.3kJ/kg)\frac{30\degree C-27\degree C}{30\degree C-20\degree C}=467.77kJ/kgBefore I can get the specific internal temperature of state 2, I need the temperature of state 2.P2V2=mRT2P_2V_2=mRT_2T2=P2V2mR=4bar0.05672m30.353kg188.58J/(kgK)=340.8K=67.65°CT_2=\frac{P_2V_2}{mR}=\frac{4bar*0.05672m^3}{0.353kg*188.58J/(kg*K)}=340.8K=67.65\degree CSpecific internal energies of state 2 from table A-18 with p=4barp=4bar around my target T=67.65°CT=67.65\degree C
TT uu
60°C60\degree C 521.1kJ/kg521.1kJ/kg
70°C70\degree C 538.1kJ/kg538.1kJ/kg
u2=521.1kJ/kg+(538.1kJ/kg521.1kJ/kg)70°C67.65°C70°C60°C=525.1kJ/kgu_2=521.1kJ/kg+(538.1kJ/kg-521.1kJ/kg)\frac{70\degree C-67.65\degree C}{70\degree C-60\degree C}=525.1kJ/kgNow it all comes together.Q=m(u2u1)+W=0.353kg(525.1kJ/kg467.77kJ/kg)+(26.86kJ)=6.62kJQ=m(u_2-u_1)+W=0.353kg*(525.1kJ/kg-467.77kJ/kg)+(-26.86kJ)=\boxed{-6.62kJ}