§ME 231 Homework 10


Sep 25, 2025

§6.81


Air in a piston-cylinder assembly is compressed isentropically from state 1, where T1 = 35°C, to state 2, where the specific volume is one-tenth of the specific volume at state 1. Applying the ideal gas model and assuming variations in specific heat, determine (a) T2, in °C, and (b) the work, in kJ/kg.
T1=35°C T_1=35\degree C
v2=110v1 v_2=\frac{1}{10}v_1
From table A-22 with T1=35°C=308.15K310KT_1=35\degree C=308.15K\approx310K:
vr1=572.3 v_{r1}=572.3
h1=310.24kJ/kg h_1=310.24kJ/kg
vr2vr1=v2v1 \frac{v_{r2}}{v_{r1}}=\frac{v_2}{v_1}
vr2=v2vr1v1 v_{r2}=\frac{v_2 v_{r1}}{v_1}
vr2=110v1vr1v1 v_{r2}=\frac{\frac{1}{10}v_1 v_{r1}}{v_1}
vr2=vr110 v_{r2}=\frac{v_{r1}}{10}
vr2=vr110=572.310=57.23 v_{r2}=\frac{v_{r1}}{10}=\frac{572.3}{10}=57.23
From table A-22 with vr=57.2357.63v_r=57.23\approx57.63:
T2=750K=476.85°C T_2=750K=\boxed{476.85\degree C}
h2=767.29kJ/kg h_2=767.29kJ/kg
w=h2h1=767.29kJ/kg310.24kJ/kg=457.15kJ/kg w=h_2-h_1=767.29kJ/kg-310.24kJ/kg=\boxed{457.15kJ/kg}

§6.82


Steam undergoes an isentropic compression in an insulated piston–cylinder assembly from an initial state where T1 = 120°C, p1 = 1 bar to a final state where the pressure p2 = 100 bar. Determine the final temperature, in °C, and the work, in kJ per kg of steam.
Q=0 Q=0
T1=120°C T_1=120\degree C
P1=1bar P_1=1bar
P2=100bar P_2=100bar
From table A-4 at p=1barp=1bar and T=120°CT=120\degree C:
s1=s2=7.4668kJkgK s_1=s_2=7.4668\frac{kJ}{kg*K}
u1=2537.3kJ/kg u_1=2537.3kJ/kg
Excerpt from table A-4 at p=100barp=100bar:
TT ss uu
700°C700\degree C 7.1687kJkgK7.1687\frac{kJ}{kg*K} 3434.7kJ/kg3434.7kJ/kg
740°C740\degree C 7.2670kJkgK7.2670\frac{kJ}{kg*K} 3512.1kJ/kg3512.1kJ/kg
Extrapolation (not interpolation):
T2=700+(740700)7.46687.16877.26707.1687=821.3°C T_2=700+(740-700)*\frac{7.4668-7.1687}{7.2670-7.1687}=\boxed{821.3\degree C}
u2=3434.7+(3512.13434.7)7.46687.16877.26707.1687=3669.4kJ/kg u_2=3434.7+(3512.1-3434.7)*\frac{7.4668-7.1687}{7.2670-7.1687}=3669.4kJ/kg
w=u2u1=3669.4kJ/kg2537.3kJ/kg=1132kj/kg w=u_2-u_1=3669.4kJ/kg-2537.3kJ/kg=\boxed{1132kj/kg}

§6.83


NOTE
Propane undergoes an isentropic expansion from an initial state where T1 = 40°C, p1 = 1 MPa to a final state where the temperature and pressure are T2, p2, respectively. Determinea. p2 in kPa, when T2 = −50°C.b. T2, in °C, when p2 = 0.7 MPa.
T1=40°C T_1=40\degree C
P1=1MPa P_1=1MPa
From table A-18 with P=1MPaP=1MPa and T=40°CT=40\degree C:
s1=s2=1.810kJkgK s_1=s_2=1.810\frac{kJ}{kg*K}

§6.83 (a)


T2=50°C T_2=-50\degree C
From table A-18 with T=50°CT=-50\degree C and s=1.810kJkgK=1.871kJkgKs=1.810\frac{kJ}{kg*K}\approx=1.871\frac{kJ}{kg*K}:
P2=0.5bar=50kPa P_2=0.5bar=\boxed{50kPa}

§6.83 (b)


P2=0.7MPa P_2=0.7MPa
From table A-18 with P=0.7MPaP=0.7MPa and s=1.810kJkgK1.840kJkgKs=1.810\frac{kJ}{kg*K} \approx 1.840\frac{kJ}{kg*K}:
T2=30°C T_2=\boxed{30\degree C}

§6.92


Water vapor at 5 bar, 320°C enters a turbine operating at steady state with a volumetric flow rate of 0.65 m3/s and expands adiabatically to an exit state of 1 bar, 160°C. Kinetic and potential energy effects are negligible. Determine for the turbine (a) the power developed, in kW, (b) the rate of entropy production, in kW/K, and (c) the isentropic turbine efficiency.
P1=5bar P_1=5bar
T1=320°C T_1=320\degree C
m˙1=m˙2=m˙ \dot{m}_1=\dot{m}_2=\dot{m}
V˙1=0.65m3/s \dot{V}_1=0.65m^3/s
Q˙=0 \dot{Q}=0
P2=1bar P_2=1bar
T2=160°C T_2=160\degree C
KE=PE=0 KE=PE=0
From table A-4 with P=5barP=5bar and T=320°CT=320\degree C:
v1=0.5416m3/kg v_1=0.5416m^3/kg
h1=3105.6kJ/kg h_1=3105.6kJ/kg
s1=7.5308kJkgK s_1=7.5308\frac{kJ}{kg*K}
From table A-4 with P=1barP=1bar and T=160°CT=160\degree C:
h2=2796.2kJ/kg h_2=2796.2kJ/kg
s2=7.6597kJkgK s_2=7.6597\frac{kJ}{kg*K}
v=Vm v=\frac{V}{m}
m=Vv m=\frac{V}{v}
m˙=V˙1v1=0.65m3/s0.5416m3/kg=1.2kg/s \dot{m}=\frac{\dot{V}_1}{v_1}=\frac{0.65m^3/s}{0.5416m^3/kg}=1.2kg/s
0=Q˙W˙+m˙[h1h2+v12v222+g(z1z2)] 0=\cancel{\dot{Q}}-\dot{W}+\dot{m}\left[h_1-h_2+\cancel{\frac{\vec{v}_1^2-\vec{v}_2^2}{2}}+\cancel{g(z_1-z_2)}\right]
0=W˙+m˙[h1h2] 0=-\dot{W}+\dot{m}\left[h_1-h_2\right]
W˙=m˙[h1h2]=1.2kg/s[3105.6kJ/kg2796.2kJ/kg]=371kW \dot{W}=\dot{m}[h_1-h_2]=1.2kg/s * [3105.6kJ/kg - 2796.2kJ/kg]=\boxed{371kW}
0=Q˙jTj+m˙(s1s2)+σ˙cv 0=\cancel{\sum\frac{\dot{Q}_j}{T_j}}+\dot{m}(s_1-s_2)+\dot{\sigma}_{cv}
σ˙=m˙(s1s2) -\dot{\sigma}=\dot{m}(s_1-s_2)
σ˙=m˙(s2s1) \dot{\sigma}=\dot{m}(s_2-s_1)
σ˙=1.2kg/s(7.6597kJkgK7.5308kJkgK)=0.1547kWK \dot{\sigma}=1.2kg/s * (7.6597\frac{kJ}{kg*K}-7.5308\frac{kJ}{kg*K})=\boxed{0.1547\frac{kW}{K}}
s2s=s1=7.5308kJkgK s_{2s}=s_1=7.5308\frac{kJ}{kg*K}
Excerpt from table A-4 with P=1barP=1bar and around s=s2s=7.5308kJkgKs=s_{2s}=7.5308\frac{kJ}{kg*K}
hh ss
2716.6kJkg2716.6\frac{kJ}{kg} 7.4668kJkgK7.4668\frac{kJ}{kg*K}
2796.2kJkg2796.2\frac{kJ}{kg} 7.6597kJkgK7.6597\frac{kJ}{kg*K}
h2s=2716.6+(2796.22716.6)7.53087.46687.65977.4668=2743.0kJkg h_{2s}=2716.6+(2796.2-2716.6)\frac{7.5308-7.4668}{7.6597-7.4668}=2743.0\frac{kJ}{kg}
W˙s=m˙[h1h2s]=1.2kg/s[3105.6kJ/kg2743.0kJ/kg]=435kW \dot{W}_s=\dot{m}[h_1-h_{2s}]=1.2kg/s * [3105.6kJ/kg - 2743.0kJ/kg]=435kW
η=W˙W˙s=371kW435kW=0.8529=85.29% \eta=\frac{\dot{W}}{\dot{W}_s}=\frac{371kW}{435kW}=0.8529=\boxed{85.29\%}

§6.98


Air enters the compressor of a gas turbine power plant operating at steady state at 290 K, 100 kPa and exits at 330 kPa. Stray heat transfer and kinetic and potential energy effects are negligible. The isentropic compressor efficiency is 90.3%. Using the ideal gas model for air, determine the work input, in kJ per kg of air flowing.
T1=290K T_1=290K
P1=100kPa P_1=100kPa
P2=330kPa P_2=330kPa
m˙=const \dot{m}=\text{const}
Q˙=0 \dot{Q}=0
KE=PE=0 KE=PE=0
η=90.3%=0.903 \eta=90.3\%=0.903
From table A-22 with T=290KT=290K:
h1=290.16kJkg h_1=290.16\frac{kJ}{kg}
From table A-20 with T=290K300KT=290K\approx300K:
k=1.400 k=1.400
T2sT1=(P2P1)k1k \frac{T_{2s}}{T_1}=\left(\frac{P_2}{P_1}\right)^\frac{k-1}{k}
T2s=T1(P2P1)k1k=290K(330kPa100kPa)1.40011.400=407.89K T_{2s}=T_1\left(\frac{P_2}{P_1}\right)^\frac{k-1}{k}=290K * \left(\frac{330kPa}{100kPa}\right)^\frac{1.400-1}{1.400}=407.89K
Excerpt from table A-22 around T=407.89KT=407.89K:
TT hh
400400 400.98kJ/kg400.98kJ/kg
410410 411.12kJ/kg411.12kJ/kg
h2s=400.98+(411.12400.98)407.89400410400=408.98kJ/kg h_{2s}=400.98+(411.12-400.98)\frac{407.89-400}{410-400}=408.98kJ/kg
0=Q˙W˙s+m˙[h1h2+v12v222+g(z1z2)] 0=\cancel{\dot{Q}}-\dot{W}_s+\dot{m}\left[h_1-h_2+\cancel{\frac{\vec{v}_1^2-\vec{v}_2^2}{2}}+\cancel{g(z_1-z_2)}\right]
0=W˙s+m˙[h1h2] 0=-\dot{W}_s+\dot{m}\left[h_1-h_2\right]
W˙s=m˙[h1h2] \dot{W}_s=\dot{m}[h_1-h_2]
W˙sm˙=Wsm=ws=h1h2s=290.16kJ/kg408.98kJ/kg=118.8kJ/kg \frac{\dot{W}_s}{\dot{m}}=\frac{W_s}{m}=w_s=h_1-h_{2s}=290.16kJ/kg-408.98kJ/kg=-118.8kJ/kg
η=WWs=wws \eta=\frac{W}{W_s}=\frac{w}{w_s}
w=ηws=0.903118.8kJ/kg=107.28kJ/kg w=\eta w_s=0.903 * -118.8kJ/kg=\boxed{-107.28kJ/kg}
The negative sign indicates that this is from the perspective of the compressor which is receiving the work.