§AERE 321 Homework 1


Sep 25, 2025
A faithful recreation of the beam in question:
Given:
L=84" L = 84"
L/2=42" L / 2 = 42"
h=1" h = 1"
b=6" b = 6"
E=30,000ksi E = 30,000 ksi
σY=350ksi \sigma_Y = 350 ksi
τY=190ksi \tau_Y = 190 ksi
The complexity of this problem will skyrocket since I will be normalizing by dividing by WW so I will write the equations without units but under the hood, it's all inches and kips.
M(x)=Ax+Bx42+12W(x422x2) M(x) = A \langle x \rangle + B \langle x - 42 \rangle + \frac{1}{2} W (\langle x - 42 \rangle^2 - \langle x \rangle^2)
θ(x)=1EIM(x) dx=1EI[12Ax2+12Bx422+16W(x423x3)+C1] \theta(x) = \frac{1}{EI} \int M(x) ~ dx = \frac{1}{EI} \left[ \frac{1}{2} A \langle x \rangle^2 + \frac{1}{2} B \langle x - 42 \rangle^2 + \frac{1}{6} W (\langle x - 42 \rangle^3 - \langle x \rangle^3) + C_1 \right]
y(x)=θ(x) dx=1EI[16Ax3+16Bx423+124W(x424x4)+C1x+C2] y(x) = \int \theta(x) ~ dx = \frac{1}{EI} \left[ \frac{1}{6} A \langle x \rangle^3 + \frac{1}{6} B \langle x - 42 \rangle^3 + \frac{1}{24} W (\langle x - 42 \rangle^4 - \langle x \rangle^4) + C_1 x + C_2 \right]
The end constraints are very revealing:
y(0)=0=0+0+(00)+0+C2    C2=0 y(0) = 0 = 0 + 0 + (0 - 0) + 0 + C_2 \implies C_2 = 0
Thus,
M(x)=Ax+Bx42+12W(x422x2) \boxed{M(x) = A \langle x \rangle + B \langle x - 42 \rangle + \frac{1}{2} W (\langle x - 42 \rangle^2 - \langle x \rangle^2)}
and
y(x)EI=16Ax3+16Bx423+124W(x424x4)+C1x \boxed{y(x)EI = \frac{1}{6} A \langle x \rangle^3 + \frac{1}{6} B \langle x - 42 \rangle^3 + \frac{1}{24} W (\langle x - 42 \rangle^4 - \langle x \rangle^4) + C_1 x}
Note that I moved EI to the left hand side for the sake of simplicity. Nevertheless, yet another constraint is directly in the middle of the beam:
y(42)EI=0=16A(84)3+0+124W(0(42)4)+C142 y(42)EI = 0 = \frac{1}{6} A (84)^3 + 0 + \frac{1}{24} W (0 - (42)^4) + C_1 * 42
    C1=3087W294A \implies C_1= 3087W - 294A
Something similar happens at the very end of the beam:
y(84)EI=0=16A(84)3+16B(42)3+124W((42)4(84)4)+C184 y(84)EI = 0 = \frac{1}{6} A (84)^3 + \frac{1}{6} B (42)^3 + \frac{1}{24} W ((42)^4 - (84)^4) + C_1 * 84
    C1=1176A147B+23152.5W \implies C_1 = -1176A - 147B + 23152.5W
Moving onto the moment, M(0)M(0) turns out to be useless but the other end, not so much:
M(84)=0=A(84)+B(42)+frac12W(422842) M(84) = 0 = A(84) + B(42) + frac{1}{2} W (42^2 - 84^2)
    A=31.5W0.5B \implies A = 31.5W - 0.5B
Now for a little trick that I figured out to preserve my sanity. Since everything's normalized by WW, I will just declare new symbols:
A=A/W A' = A / W
B=B/W B' = B / W
C1=C1/W C_1' = C_1 / W
This lets me create a system of equations that I can just chuck into a solver:
C1=3087294A C_1' = 3087 - 294A'
C1=1176A147B+23152.5 C_1' = -1176A' - 147B' + 23152.5
A=31.50.5B A' = 31.5 - 0.5B'
My solver gives me:
A=18.38W \boxed{A = 18.38W}
B=26.25W \boxed{B = 26.25W}
C1=2315.25W C_1 = -2315.25W
This would be a good time to solve for CC (the force, not the constant of integration; confusion, I know):
Fy=A+B+C42W=0 \sum F_y = A + B + C - 42W = 0
18.38W+26.25W+C42W=0 18.38W + 26.25W + C - 42W = 0
    C=2.63W \implies \boxed{C = -2.63W}
Here, C1C_1 is suspiciously large so I decided to plot it in Python. The code is fairly straight forward (I did have to define the Macaulay function which I was surprised to see not implemented already into a library). While I was at it, I also evaluated some "sanity check points", where the graphs must be 00 in order to be physically accurate. I also calculated the minimum and maximum moments.
import numpy as np import matplotlib.pyplot as plt import sympy as sp L = 84 E = 30_000 I = 55.25 W = sp.symbols("W") A = 18.38 * W B = 26.25 * W C_1 = -2315.25 * W def macaulay(x): return np.where(x < 0, 0, x) def M(x): return ( A * macaulay(x) + B * macaulay(x - 42) + (1 / 2) * W * (macaulay(x - 42) ** 2 - macaulay(x) ** 2) ) def y(x): return (1 / (E * I)) * ( (1 / 6) * A * macaulay(x) ** 3 + (1 / 6) * B * macaulay(x - 42) ** 3 + (1 / 24) * W * (macaulay(x - 42) ** 4 - macaulay(x) ** 4) + C_1 * x ) xs = np.linspace(0, L, 1000) Ms = M(xs) ys = y(xs) min_M = np.min(Ms / W) min_M_x = xs[np.argmin(Ms / W)] max_M = np.max(Ms / W) max_M_x = xs[np.argmax(Ms / W)] fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(8, 6)) ax1.plot(xs, Ms / W, color="tab:blue") ax1.annotate("End moment constraint", xy=(0, 0), color="tab:blue") ax1.annotate("End moment constraint", xy=(84, 0), color="tab:blue") ax1.annotate( f"Max negative moment ({min_M_x: 0.2f}, {min_M: 0.2f})", xy=(min_M_x, min_M), color="tab:blue", ) ax1.annotate( f"Max positive moment ({max_M_x: 0.2f}, {max_M: 0.2f})", xy=(max_M_x, max_M), color="tab:blue", ) ax1.set_ylabel("M(x) / W") ax1.axhline(0, color="k", lw=0.8) ax1.grid(True) ax2.plot(xs, ys / W, color="tab:red") ax2.annotate("Pin constraint", xy=(0, 0), color="tab:red") ax2.annotate("Roller constraint", xy=(42, 0), color="tab:red") ax2.annotate("Roller constraint", xy=(84, 0), color="tab:red") ax2.set_xlabel("x") ax2.set_ylabel("y(x) / W") ax2.axhline(0, color="k", lw=0.8) ax2.grid(True) fig.tight_layout() plt.show()
Python1670B
There were a few calculation mistakes like forgetting the integration constants but after fixing them, finally, I got a graph that makes sense. The moments at both ends is 00. The offset yy is also 00 at both rollers and the one pin. 100% worth it.
Moving on, I was able to glean the following information:
Mmin=109.93W M_{min} = -109.93W
Mmax=168.91W M_{max} = 168.91W
This will be helpful when calculating the value for WW against the maximum allowable σ=σY\sigma = \sigma_{Y} at the very top and bottom surfaces. The shear however, I still need to calculate and graph. I can take the derivative of the moment but I choose to just reconstruct it from the static diagram.
Here, I we can see that:
Vmax=23.62W |V|_{max} = 23.62W
I don't have or need to know the value of x1x_1 for this problem but I'll calculate it anyway:
18.83x1=23.6242x1    x1=18.63" \frac{18.83}{x_1} = \frac{23.62}{42 - x_1} \implies x_1 = 18.63"
The value of 18.8318.83 in inches is suspiciously the same as A=18.83WA = 18.83W but I shouldn't question is because of how symmetric the problem is about x=42"x = 42".Weird tangents aside, it's almost time to calculate the potential values of WW, I just need a few values, starting with II:
A1=A2=bh=6in2 A_1 = A_2 = bh = 6in^2
y1=b+12h=6.5" y_1 = b + \frac{1}{2}h = 6.5"
y2=12b=3" y_2 = \frac{1}{2} b = 3"
yˉ=A1y1+A2y2A1+A2=y1+y22=4.75" \bar y = \frac{\cancel{A_1} y_1 + \cancel{A_2} y_2}{\cancel{A_1} + \cancel{A_2}} = \frac{y_1 + y_2}{2} = 4.75"
d1=y1yˉ=6.5"4.75"=1.75" d_1 = y_1 - \bar y = 6.5" - 4.75" = 1.75"
d2=y2yˉ=3"4.75"=1.75" d_2 = y_2 - \bar y = 3" - 4.75" = -1.75"
I1=bh312=6"(1")312=0.5in4 I_1 = \frac{bh^3}{12} = \frac{6" * (1")^3}{12} = 0.5 in^4
I2=hb312=1"(6")312=18in4 I_2 = \frac{hb^3}{12} = \frac{1" * (6")^3}{12} = 18 in^4
I=I1+I2+A1d12+A2d22 I = I_1 + I_2 + A_1 d_1^2 + A_2 d_2^2
I=0.5in4+18in4+6in2(1.75")2+6in2(1.75")2=55.25in4 I = 0.5 in^4 + 18 in^4 + 6in^2 * (1.75")^2 + 6in^2 * (-1.75")^2 = 55.25in^4
And now for QQ, a value I still don't understand. I apologize if my drawing looks like children's doodles, I don't have a pen, just a mouse and a mighty will.
Q=bh(byˉ+12h)+(byˉ)h12(byˉ) Q = bh(b - \bar y + \frac{1}{2}h) + (b - \bar y) h \frac{1}{2} (b - \bar y)
Q=bh(byˉ+12h)+12(byˉ)2h Q = bh(b - \bar y + \frac{1}{2}h) + \frac{1}{2} (b - \bar y)^2 h
Q=6"1"(6"4.75"+121")+12(6"4.75")21"=11.28in3 Q = 6" * 1" * (6" - 4.75" + \frac{1}{2} * 1") + \frac{1}{2} (6" - 4.75")^2 * 1" = 11.28in^3
Let's recover some WW.
Mmin=109.93W M_{min} = -109.93W
Thus, the top surface will be in tension:
σY=MminbI \sigma_Y = \frac{|M_{min}|b}{I}
Mmin=IσYb=55.25in4350ksi6"=3222.92=109.93W |M_{min}| = \frac{I \sigma_Y}{b} = \frac{55.25in^4 * 350 ksi}{6"} = 3222.92 = 109.93W
    W=29.32kip/in \implies W = 29.32 kip/in
The bottom:
Mmax=168.91W M_{max} = 168.91W
σY=MmaxhI \sigma_Y = \frac{|M_{max}| h}{I}
Mmax=IσYh=55.25in4350ksi1"=19338=168.91W |M_{max}| = \frac{I \sigma_Y}{h} = \frac{55.25in^4 * 350 ksi}{1"} = 19338 = 168.91W
    W=114.5kip/in \implies W = 114.5 kip/in
The shear:
τY=VmaxQI(byˉ+h) \tau_Y = \frac{|V|_{max} Q}{I (b - \bar y + h)}
Vmax=τYI(byˉ+h)Q=190ksi55.25in4(6"4.75"+1")11.28in3=2094=23.62W |V|_{max} = \frac{\tau_Y I (b - \bar y + h)}{Q} = \frac{190 ksi * 55.25in^4 * (6" - 4.75" + 1")}{11.28in^3} = 2094 = 23.62W
    W=88.65kip/in \implies W = 88.65 kip/in
I am going with the minimum of these values which should ensure no other cases fail:
W=29.32kip/in \boxed{W = 29.32 kip/in}
When the top surface is under tension,
x=42" x = 42"
The x-axis is under the maximum allowable stress:
σx=σY=350ksi \sigma_x = \sigma_Y = 350 ksi
There's nothing happening on the other axis:
σz=σy=0 \sigma_z = \sigma_y = 0
As for the shear here:
τxy=23.62W=692.54ksi \tau_{xy} = -23.62W = -692.54 ksi
All other perpendicular shears are zero. Thus, this results in a simple state of stress cube of the very top surface of the T-beam:
One last thing the problem asks for is the normal and shear stress profiles of the cross section of the T-beam as a function of y. This will be better done with code. Here's my solution:
import numpy as np import pint import matplotlib.pyplot as plt import random ur = pint.UnitRegistry() b = 6 * ur.inch h = 1 * ur.inch A1 = b * h A2 = h * b y1 = b + (1 / 2) * h y2 = (1 / 2) * b y_bar = (A1 * y1 + A2 * y2) / (A1 + A2) d1 = y1 - y_bar d2 = y2 - y_bar I1 = (b * h**3) / 12 I2 = (h * b**3) / 12 I = I1 + A1 * d1**2 + I2 + A2 * d2**2 ys = np.linspace(0, b.magnitude, 100) * ur.inch def sigma_over_M(c): return c / I def Q(y): y = y.magnitude _h = h.magnitude _b = b.magnitude _y_bar = y_bar.magnitude if y < 0: y = -y height_2 = _y_bar - y _A2 = _h * height_2 _d2 = y + height_2 / 2 return _A2 * _d2 elif 0 <= y < _b - _y_bar: height_2 = y _A2 = _h * height_2 _d2 = height_2 / 2 height_1 = _h _A1 = height_1 * _b _d1 = height_2 + height_1 / 2 return _A2 * _d2 + _A1 * _d1 else: height_1 = _h + _b - _y_bar - y _A1 = height_1 * _b _d1 = (height_1) / 2 + y return _A1 * _d1 def tau_over_V(y): return Q(y) / (I * b) sigma_over_Ms = sigma_over_M(ys - y_bar) plt.plot(sigma_over_Ms.magnitude, ys.magnitude) plt.xlabel(r"$\sigma(x) / M$") plt.ylabel("y (inches)") plt.grid(axis="both") plt.show() plt.plot([Q(y - y_bar) for y in ys], ys - y_bar) plt.xlabel(r"$\tau(x) / V$") plt.ylabel("y (inches)") plt.grid(axis="both") plt.show()
Python1421B
The plot for σ(x)/M\sigma(x) / M is simple:
But the plot of τ(x)/V\tau(x) / V is a bit more involved:
I did anticipate the τ(x)/V\tau(x) / V to look a bit different but I have spent hours on the code and I am unsure what is going on. So, I just drew the lines by hand for what it should've looked like, no numbers.
Regardless, I believe that's all problems 1) through 7) done, wildly out of order. Sorry, TA!