§AERE 261 Homework 9 Corrections


Sep 25, 2025

§1.


General givens:
m=1680kg m=1680kg
Sref=22.9m2 S_{ref}=22.9m^2
ρ=1.225kg/m3 \rho=1.225kg/m^3
CL,max=1.37 C_{L,max}=1.37
CL,rolling=0.6 C_{L,rolling}=0.6
K=0.056 K=0.056
CD,0=0.017 C_{D,0}=0.017
Takeoff givens:
μrolling=0.05 \mu_{rolling}=0.05
hobstacle,takeoff=50ft h_\text{obstacle,takeoff}=50ft
ηpr=0.9 \eta_{pr}=0.9
Pshaft=180000W P_{shaft}=180000W
climb angle=3° \text{climb angle}=3\degree
nliftoff=1.05 n_\text{liftoff}=1.05
VLO=1.2Vstall V_{LO}=1.2V_{stall}
Landing givens:
nflare=1.08 n_{flare}=1.08
Vflare=VTD=1.3Vstall V_{flare}=V_{TD}=1.3V_{stall}
θa=3° \theta_{a}=3\degree
hobstacle,landing=50ft h_\text{obstacle,landing}=50ft
μbraking=0.5 \mu_{braking}=0.5

§Takeoff ground roll


g=9.81m/s2 g=9.81m/s^2
W=mg=1680kg9.81m/s2=16480N W=mg=1680kg*9.81m/s^2=16480N
Vstall=2WρSCL,max=216480N1.225kg/m322.9m21.37=29.29m/s V_{stall}=\sqrt{\frac{2 W}{\rho S C_{L,max}}}=\sqrt{\frac{2 * 16480N}{1.225kg/m^3 * 22.9m^2 * 1.37}}=29.29m/s
VLO=1.2Vstall=1.229.29m/s=35.15m/s V_{LO}=1.2V_{stall}=1.2 * 29.29m/s=35.15m/s
Pa=ηprPshaft=0.9180000W=162000W P_a=\eta_{pr} P_{shaft}=0.9 * 180000W=162000W
Pa=TVLO P_a=TV_{LO}
IMPORTANT
T=PaVLO=162000W35.15m/s=4609N T=\frac{P_a}{V_{LO}}=\frac{162000W}{35.15m/s}=4609N
D=12ρ(0.7VLO)2S(CD,0+KCL,rolling2) D=\frac{1}{2} \rho (0.7 V_{LO})^2 S (C_{D,0} + K C_{L,rolling}^2)
D=121.225kg/m3(0.735.15m/s)222.9m2(0.017+0.056(0.6)2)=315.5N D=\frac{1}{2} * 1.225kg/m^3 * (0.7 * 35.15m/s)^2 * 22.9m^2 * (0.017 + 0.056 * (0.6)^2)=315.5N
L=12ρ(0.7VLO)2SCL,rolling=121.225kg/m3(0.735.15m/s)222.9m20.6=5095N L=\frac{1}{2} \rho (0.7 V_{LO})^2 S C_{L,rolling}=\frac{1}{2} 1.225kg/m^3 (0.7 * 35.15m/s)^2 * 22.9m^2 * 0.6=5095N
IMPORTANT
sg=1.44W2gρSCL,max(TDμr(WL)) s_g=\frac{1.44 W^2}{g \rho S C_{L,max} (T - D - \mu_r (W - L))}
sg=1.44(16480N)29.81m/s21.225kg/m322.9m21.37(4609N315.5N0.05(16480N5095N)) s_g=\frac{1.44 * (16480N)^2}{9.81m/s^2 * 1.225kg/m^3 * 22.9m^2 * 1.37 * (4609N - 315.5N - 0.05 * (16480N - 5095N))}
sg=278.5m s_g=\boxed{278.5m}

§Takeoff transition


R=1.44Vstall2g(n1)=1.44(29.29m/s)29.81m/s2(1.051)=2519m R=\frac{1.44V_{stall}^2}{g(n-1)}=\frac{1.44 * (29.29m/s)^2}{9.81m/s^2 * (1.05 - 1)}=2519m
str=Rsinθ=2519msin3°=131.8m s_{tr}=R \sin \theta=2519m \sin 3\degree=\boxed{131.8m}

§Takeoff air


h=50ft=15.24m h=50ft=15.24m
ha=hR+Rcosθ h_a=h - R + R \cos \theta
ha=15.24m2519m+2519mcos3°=11.788m h_a=15.24m - 2519m + 2519m \cos 3\degree=11.788m
sa=hatanθ=11.788mtan3°=224.9m s_a=\frac{h_a}{\tan \theta}=\frac{11.788m}{\tan 3\degree}=\boxed{224.9m}
IMPORTANT

§Takeoff total


stakeoff=sg+str+sa=278.5m+131.8m+224.9m=635.2m s_\text{takeoff}=s_g+s_{tr}+s_a=278.5m+131.8m+224.9m=\boxed{635.2m}

§Landing approach


hf=RRcosθa=2519m2519mcos3°=3.452m h_f=R-R \cos \theta_a=2519m - 2519m \cos 3\degree=3.452m
h=50ft=15.24m h=50ft=15.24m
hf+ha=h h_f+h_a=h
ha=hhf=15.24m3.452m=11.788m h_a=h-h_f=15.24m-3.452m=11.788m
sa=hatanθa=11.788mtan3°=224.9m s_a=\frac{h_a}{\tan \theta_a}=\frac{11.788m}{\tan 3\degree}=\boxed{224.9m}

§Landing flare


IMPORTANT
RR must've been recalculated with n=1.08n=1.08 which was not performed.
θf=θa=3° \theta_f=\theta_a=3\degree
sf=Rsinθf=2519msin3°=131.8m s_f=R \sin \theta_f=2519m \sin 3\degree=\boxed{131.8m}

§Landing ground roll


VTD=1.3Vstall=1.329.29m/s=38.077m/s V_{TD}=1.3V_{stall}=1.3 * 29.29m/s=38.077m/s
D=12ρ(0.7VTD)2S(CD,0+KCL2) D=\frac{1}{2} \rho (0.7 V_{TD})^2 S (C_{D,0} + K C_L^2)
D=121.225kg/m3(0.738.077m/s)222.9m2(0.017+0.056(0.6)2)=370.3N D=\frac{1}{2} * 1.225kg/m^3 * (0.7 * 38.077m/s)^2 * 22.9m^2 * (0.017 + 0.056 * (0.6)^2)=370.3N
L=12ρ(0.7VTD)2SCL=121.225kg/m3(0.738.077m/s)222.9m20.6=5979N L=\frac{1}{2} \rho (0.7 V_{TD})^2 S C_{L}=\frac{1}{2} * 1.225kg/m^3 * (0.7 * 38.077m/s)^2 * 22.9m^2 * 0.6=5979N
sg=1.69W2gρSCL,max(D+μr(WL)) s_g=\frac{1.69 W^2}{g \rho S C_{L,max} (D + \mu_r (W - L))}
IMPORTANT
sg=1.69(16480N)29.81m/s21.225kg/m322.9m21.37(370.3N+0.05(16480N5979N))=1360m s_g=\frac{1.69 * (16480N)^2}{9.81m/s^2 * 1.225kg/m^3 * 22.9m^2 * 1.37 (370.3N + 0.05 * (16480N - 5979N))}=\boxed{1360m}

§Landing total


slanding=sa+sf+sg=224.9m+131.8m+1360m=1716.7m s_\text{landing}=s_a+s_f+s_g=224.9m + 131.8m + 1360m=\boxed{1716.7m}