WRITERWRITERWRITERWRITER
§
AERE 261 Homework 10
Sep 25, 2025
§
1.
A
single inlet
=
0.16
m
2
A_\text{single inlet}=0.16m^2
A
single inlet
=
0.16
m
2
A
turbofan
=
0.29
m
2
A_\text{turbofan}=0.29m^2
A
turbofan
=
0.29
m
2
V
∞
=
68
m
/
s
V_\infty=68m/s
V
∞
=
68
m
/
s
§
1. (a)
Q
single inlet
=
V
∞
A
single inlet
=
68
m
/
s
∗
0.16
m
2
=
10.9
m
3
/
s
Q_\text{single inlet}=V_\infty A_\text{single inlet}=68m/s * 0.16m^2=\boxed{10.9m^3/s}
Q
single inlet
=
V
∞
A
single inlet
=
68
m
/
s
∗
0.16
m
2
=
10.9
m
3
/
s
§
1. (b)
Q
turbofan
=
Q
=
2
Q
single inlet
=
2
∗
10.9
m
3
/
s
=
21.8
m
3
/
s
Q_\text{turbofan}=Q=2Q_\text{single inlet}=2 * 10.9m^3/s=\boxed{21.8m^3/s}
Q
turbofan
=
Q
=
2
Q
single inlet
=
2
∗
10.9
m
3
/
s
=
21.8
m
3
/
s
§
1. (c)
Q
=
V
A
Q=VA
Q
=
V
A
V
=
Q
A
V=\frac{Q}{A}
V
=
A
Q
V
turbofan
=
Q
A
turbofan
=
21.8
m
3
/
s
0.29
m
2
=
75.2
m
/
s
V_\text{turbofan}=\frac{Q}{A_\text{turbofan}}=\frac{21.8m^3/s}{0.29m^2}=\boxed{75.2m/s}
V
turbofan
=
A
turbofan
Q
=
0.29
m
2
21.8
m
3
/
s
=
75.2
m
/
s
§
1. (d)
V
turbofan
=
75.2
m
/
s
>
V
∞
=
68
m
/
s
⟹
the air accelerated
V_\text{turbofan}=75.2m/s>V_\infty=68m/s\implies\boxed{\text{the air accelerated}}
V
turbofan
=
75.2
m
/
s
>
V
∞
=
68
m
/
s
⟹
the air accelerated
§
2.
h
=
2000
m
h=2000m
h
=
2000
m
W
0
=
16481
N
W_0=16481N
W
0
=
16481
N
S
=
22.9
m
2
S=22.9m^2
S
=
22.9
m
2
C
L
,
m
a
x
=
1.37
C_{L,max}=1.37
C
L
,
ma
x
=
1.37
§
2. (a)
Point A measures the static pressure.
§
2. (b)
Point B measures the total pressure.
§
2. (c)
V
∞
=
89.5
m
/
s
V_\infty=89.5m/s
V
∞
=
89.5
m
/
s
From appendix A for
h
=
2000
m
h=2000m
h
=
2000
m
:
ρ
∞
=
1.0066
k
g
/
m
3
\rho_\infty=1.0066kg/m^3
ρ
∞
=
1.0066
k
g
/
m
3
p
static
=
p
∞
=
7.9501
∗
10
4
P
a
=
79501
P
a
p_\text{static}=p_\infty=7.9501*10^4Pa=\boxed{79501Pa}
p
static
=
p
∞
=
7.9501
∗
1
0
4
P
a
=
79501
P
a
§
2. (d)
1
2
ρ
∞
V
∞
2
=
P
total
−
P
∞
\frac{1}{2} \rho_\infty V_\infty^2 = P_\text{total} - P_\infty
2
1
ρ
∞
V
∞
2
=
P
total
−
P
∞
P
total
=
1
2
ρ
∞
V
∞
2
+
P
∞
=
1
2
∗
1.0066
k
g
/
m
3
∗
(
89.5
m
/
s
)
2
+
79501
P
a
=
83530
P
a
P_\text{total} = \frac{1}{2} \rho_\infty V_\infty^2 + P_\infty = \frac{1}{2} * 1.0066kg/m^3 * (89.5m/s)^2 + 79501Pa = \boxed{83530Pa}
P
total
=
2
1
ρ
∞
V
∞
2
+
P
∞
=
2
1
∗
1.0066
k
g
/
m
3
∗
(
89.5
m
/
s
)
2
+
79501
P
a
=
83530
P
a
§
2. (e)
V
s
t
a
l
l
=
2
W
ρ
∞
S
C
L
,
m
a
x
=
2
∗
16481
N
1.0066
k
g
/
m
3
∗
22.9
m
2
∗
1.37
=
32.31
m
/
s
V_{stall}=\sqrt{\frac{2 W}{\rho_\infty S C_{L,max}}}=\sqrt{\frac{2 * 16481N}{1.0066kg/m^3 * 22.9m^2 * 1.37}}=\boxed{32.31m/s}
V
s
t
a
ll
=
ρ
∞
S
C
L
,
ma
x
2
W
=
1.0066
k
g
/
m
3
∗
22.9
m
2
∗
1.37
2
∗
16481
N
=
32.31
m
/
s
§
2. (f)
The static pressure remains the same.
p
static
=
79501
P
a
p_\text{static}=\boxed{79501Pa}
p
static
=
79501
P
a
§
2. (g)
P
total
=
1
2
ρ
∞
V
∞
2
+
P
∞
=
1
2
∗
1.0066
k
g
/
m
3
∗
(
32.31
m
/
s
)
2
+
79501
P
a
=
80026
P
a
P_\text{total} = \frac{1}{2} \rho_\infty V_\infty^2 + P_\infty = \frac{1}{2} * 1.0066kg/m^3 * (32.31m/s)^2 + 79501Pa = \boxed{80026Pa}
P
total
=
2
1
ρ
∞
V
∞
2
+
P
∞
=
2
1
∗
1.0066
k
g
/
m
3
∗
(
32.31
m
/
s
)
2
+
79501
P
a
=
80026
P
a